aboutsummaryrefslogtreecommitdiffstats
path: root/src/libs/arduinoFFT-develop/Examples/FFT_05
diff options
context:
space:
mode:
authorFinlay Davidson <finlay.davidson@coderclass.nl>2023-05-28 03:03:49 +0200
committerJF <JF002@users.noreply.github.com>2023-06-17 17:46:48 +0200
commit505520d83b59e74cb567a3a1e6e55d910faec522 (patch)
treeb9f67465ea3e08156ab33440d5644b39c7a5e774 /src/libs/arduinoFFT-develop/Examples/FFT_05
parent473a0795d6fbad10fcf769cae3095bb85aa86d59 (diff)
arduinofft: Move to submodule, define srqt_internal externally
Diffstat (limited to 'src/libs/arduinoFFT-develop/Examples/FFT_05')
-rw-r--r--src/libs/arduinoFFT-develop/Examples/FFT_05/FFT_05.ino124
1 files changed, 0 insertions, 124 deletions
diff --git a/src/libs/arduinoFFT-develop/Examples/FFT_05/FFT_05.ino b/src/libs/arduinoFFT-develop/Examples/FFT_05/FFT_05.ino
deleted file mode 100644
index a6f4df7a..00000000
--- a/src/libs/arduinoFFT-develop/Examples/FFT_05/FFT_05.ino
+++ /dev/null
@@ -1,124 +0,0 @@
-/*
-
- Example of use of the FFT libray
-
- Copyright (C) 2014 Enrique Condes
- Copyright (C) 2020 Bim Overbohm (header-only, template, speed improvements)
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
-
-*/
-
-/*
- In this example, the Arduino simulates the sampling of a sinusoidal 1000 Hz
- signal with an amplitude of 100, sampled at 5000 Hz. Samples are stored
- inside the vReal array. The samples are windowed according to Hamming
- function. The FFT is computed using the windowed samples. Then the magnitudes
- of each of the frequencies that compose the signal are calculated. Finally,
- the frequency with the highest peak is obtained, being that the main frequency
- present in the signal. This frequency is printed, along with the magnitude of
- the peak.
-*/
-
-#include "arduinoFFT.h"
-
-/*
-These values can be changed in order to evaluate the functions
-*/
-const uint16_t samples = 64; //This value MUST ALWAYS be a power of 2
-const double signalFrequency = 1000;
-const double samplingFrequency = 5000;
-const uint8_t amplitude = 100;
-
-/*
-These are the input and output vectors
-Input vectors receive computed results from FFT
-*/
-double vReal[samples];
-double vImag[samples];
-
-/* Create FFT object */
-ArduinoFFT<double> FFT = ArduinoFFT<double>(vReal, vImag, samples, samplingFrequency);
-
-#define SCL_INDEX 0x00
-#define SCL_TIME 0x01
-#define SCL_FREQUENCY 0x02
-#define SCL_PLOT 0x03
-
-void setup()
-{
- Serial.begin(115200);
- Serial.println("Ready");
-}
-
-void loop()
-{
- /* Build raw data */
- double cycles = (((samples-1) * signalFrequency) / samplingFrequency); //Number of signal cycles that the sampling will read
- for (uint16_t i = 0; i < samples; i++)
- {
- vReal[i] = int8_t((amplitude * (sin((i * (TWO_PI * cycles)) / samples))) / 2.0);/* Build data with positive and negative values*/
- //vReal[i] = uint8_t((amplitude * (sin((i * (twoPi * cycles)) / samples) + 1.0)) / 2.0);/* Build data displaced on the Y axis to include only positive values*/
- vImag[i] = 0.0; //Imaginary part must be zeroed in case of looping to avoid wrong calculations and overflows
- }
- /* Print the results of the simulated sampling according to time */
- Serial.println("Data:");
- PrintVector(vReal, samples, SCL_TIME);
- FFT.windowing(FFTWindow::Hamming, FFTDirection::Forward); /* Weigh data */
- Serial.println("Weighed data:");
- PrintVector(vReal, samples, SCL_TIME);
- FFT.compute(FFTDirection::Forward); /* Compute FFT */
- Serial.println("Computed Real values:");
- PrintVector(vReal, samples, SCL_INDEX);
- Serial.println("Computed Imaginary values:");
- PrintVector(vImag, samples, SCL_INDEX);
- FFT.complexToMagnitude(); /* Compute magnitudes */
- Serial.println("Computed magnitudes:");
- PrintVector(vReal, (samples >> 1), SCL_FREQUENCY);
- double x;
- double v;
- FFT.majorPeak(x, v);
- Serial.print(x, 6);
- Serial.print(", ");
- Serial.println(v, 6);
- while(1); /* Run Once */
- // delay(2000); /* Repeat after delay */
-}
-
-void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType)
-{
- for (uint16_t i = 0; i < bufferSize; i++)
- {
- double abscissa;
- /* Print abscissa value */
- switch (scaleType)
- {
- case SCL_INDEX:
- abscissa = (i * 1.0);
- break;
- case SCL_TIME:
- abscissa = ((i * 1.0) / samplingFrequency);
- break;
- case SCL_FREQUENCY:
- abscissa = ((i * 1.0 * samplingFrequency) / samples);
- break;
- }
- Serial.print(abscissa, 6);
- if(scaleType==SCL_FREQUENCY)
- Serial.print("Hz");
- Serial.print(" ");
- Serial.println(vData[i], 4);
- }
- Serial.println();
-}