1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
#include "heartratetask/HeartRateTask.h"
#include <drivers/Hrs3300.h>
#include <components/heartrate/HeartRateController.h>
using namespace Pinetime::Applications;
namespace {
constexpr TickType_t backgroundMeasurementTimeLimit = 30 * configTICK_RATE_HZ;
}
std::optional<TickType_t> HeartRateTask::BackgroundMeasurementInterval() const {
auto interval = settings.GetHeartRateBackgroundMeasurementInterval();
if (!interval.has_value()) {
return std::nullopt;
}
return interval.value() * configTICK_RATE_HZ;
}
bool HeartRateTask::BackgroundMeasurementNeeded() const {
auto backgroundPeriod = BackgroundMeasurementInterval();
if (!backgroundPeriod.has_value()) {
return false;
}
return xTaskGetTickCount() - lastMeasurementTime >= backgroundPeriod.value();
};
TickType_t HeartRateTask::CurrentTaskDelay() const {
auto backgroundPeriod = BackgroundMeasurementInterval();
TickType_t currentTime = xTaskGetTickCount();
switch (state) {
case States::Disabled:
return portMAX_DELAY;
case States::Waiting:
// Sleep until a new event if background measuring disabled
if (!backgroundPeriod.has_value()) {
return portMAX_DELAY;
}
// Sleep until the next background measurement
if (currentTime - lastMeasurementTime < backgroundPeriod.value()) {
return backgroundPeriod.value() - (currentTime - lastMeasurementTime);
}
// If one is due now, go straight away
return 0;
case States::BackgroundMeasuring:
case States::ForegroundMeasuring:
return Pinetime::Controllers::Ppg::deltaTms;
}
}
HeartRateTask::HeartRateTask(Drivers::Hrs3300& heartRateSensor,
Controllers::HeartRateController& controller,
Controllers::Settings& settings)
: heartRateSensor {heartRateSensor}, controller {controller}, settings {settings} {
}
void HeartRateTask::Start() {
messageQueue = xQueueCreate(10, 1);
controller.SetHeartRateTask(this);
if (pdPASS != xTaskCreate(HeartRateTask::Process, "Heartrate", 500, this, 0, &taskHandle)) {
APP_ERROR_HANDLER(NRF_ERROR_NO_MEM);
}
}
void HeartRateTask::Process(void* instance) {
auto* app = static_cast<HeartRateTask*>(instance);
app->Work();
}
void HeartRateTask::Work() {
// measurementStartTime is always initialised before use by StartMeasurement
// Need to initialise lastMeasurementTime so that the first background measurement happens at a reasonable time
lastMeasurementTime = xTaskGetTickCount();
valueCurrentlyShown = false;
while (true) {
TickType_t delay = CurrentTaskDelay();
Messages msg;
States newState = state;
if (xQueueReceive(messageQueue, &msg, delay) == pdTRUE) {
switch (msg) {
case Messages::GoToSleep:
// Ignore power state changes when disabled
if (state == States::Disabled) {
break;
}
// State is necessarily ForegroundMeasuring
// As previously screen was on and measurement is enabled
if (BackgroundMeasurementNeeded()) {
newState = States::BackgroundMeasuring;
} else {
newState = States::Waiting;
}
break;
case Messages::WakeUp:
// Ignore power state changes when disabled
if (state == States::Disabled) {
break;
}
newState = States::ForegroundMeasuring;
break;
case Messages::Enable:
// Can only be enabled when the screen is on
// If this constraint is somehow violated, the unexpected state
// will self-resolve at the next screen on event
newState = States::ForegroundMeasuring;
valueCurrentlyShown = false;
break;
case Messages::Disable:
newState = States::Disabled;
break;
}
}
if (newState == States::Waiting && BackgroundMeasurementNeeded()) {
newState = States::BackgroundMeasuring;
} else if (newState == States::BackgroundMeasuring && !BackgroundMeasurementNeeded()) {
newState = States::Waiting;
}
// Apply state transition (switch sensor on/off)
if ((newState == States::ForegroundMeasuring || newState == States::BackgroundMeasuring) &&
(state == States::Waiting || state == States::Disabled)) {
StartMeasurement();
} else if ((newState == States::Waiting || newState == States::Disabled) &&
(state == States::ForegroundMeasuring || state == States::BackgroundMeasuring)) {
StopMeasurement();
}
state = newState;
if (state == States::ForegroundMeasuring || state == States::BackgroundMeasuring) {
HandleSensorData();
}
}
}
void HeartRateTask::PushMessage(HeartRateTask::Messages msg) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xQueueSendFromISR(messageQueue, &msg, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}
void HeartRateTask::StartMeasurement() {
heartRateSensor.Enable();
ppg.Reset(true);
vTaskDelay(100);
measurementSucceeded = false;
measurementStartTime = xTaskGetTickCount();
}
void HeartRateTask::StopMeasurement() {
heartRateSensor.Disable();
ppg.Reset(true);
vTaskDelay(100);
}
void HeartRateTask::HandleSensorData() {
auto sensorData = heartRateSensor.ReadHrsAls();
int8_t ambient = ppg.Preprocess(sensorData.hrs, sensorData.als);
int bpm = ppg.HeartRate();
// Ambient light detected
if (ambient > 0) {
// Reset all DAQ buffers
ppg.Reset(true);
controller.Update(Controllers::HeartRateController::States::NotEnoughData, bpm);
bpm = 0;
valueCurrentlyShown = false;
}
// Reset requested, or not enough data
if (bpm == -1) {
// Reset all DAQ buffers except HRS buffer
ppg.Reset(false);
// Set HR to zero and update
bpm = 0;
controller.Update(Controllers::HeartRateController::States::Running, bpm);
valueCurrentlyShown = false;
} else if (bpm == -2) {
// Not enough data
bpm = 0;
if (!valueCurrentlyShown) {
controller.Update(Controllers::HeartRateController::States::NotEnoughData, bpm);
}
}
if (bpm != 0) {
// Maintain constant frequency acquisition in background mode
// If the last measurement time is set to the start time, then the next measurement
// will start exactly one background period after this one
// Avoid this if measurement exceeded the time limit (which happens with background intervals <= limit)
if (state == States::BackgroundMeasuring && xTaskGetTickCount() - measurementStartTime < backgroundMeasurementTimeLimit) {
lastMeasurementTime = measurementStartTime;
} else {
lastMeasurementTime = xTaskGetTickCount();
}
measurementSucceeded = true;
valueCurrentlyShown = true;
controller.Update(Controllers::HeartRateController::States::Running, bpm);
return;
}
// If been measuring for longer than the time limit, set the last measurement time
// This allows giving up on background measurement after a while
// and also means that background measurement won't begin immediately after
// an unsuccessful long foreground measurement
if (xTaskGetTickCount() - measurementStartTime > backgroundMeasurementTimeLimit) {
// When measuring, propagate failure if no value within the time limit
// Prevents stale heart rates from being displayed for >1 background period
// Or more than the time limit after switching to screen on (where the last background measurement was successful)
// Note: Once a successful measurement is recorded in screen on it will never be cleared
// without some other state change e.g. ambient light reset
if (!measurementSucceeded) {
controller.Update(Controllers::HeartRateController::States::Running, 0);
valueCurrentlyShown = false;
}
if (state == States::BackgroundMeasuring) {
lastMeasurementTime = xTaskGetTickCount() - backgroundMeasurementTimeLimit;
} else {
lastMeasurementTime = xTaskGetTickCount();
}
}
}
|