1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
#!/usr/bin/env python3
import argparse
import pathlib
import sys
import decimal
from PIL import Image
def classify_pixel(value, bits):
def round_half_up(v):
"""python3 implements "propper" "banker's rounding" by rounding to the nearest
even number. Javascript rounds to the nearest integer.
To have the same output as the original JavaScript implementation add a custom
rounding function, which does "school" rounding (to the nearest integer).
see: https://stackoverflow.com/questions/43851273/how-to-round-float-0-5-up-to-1-0-while-still-rounding-0-45-to-0-0-as-the-usual
"""
return int(decimal.Decimal(v).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP))
tmp = 1 << (8 - bits)
val = round_half_up(value / tmp) * tmp
if val < 0:
val = 0
return val
def test_classify_pixel():
# test difference between round() and round_half_up()
assert classify_pixel(18, 5) == 16
# school rounding 4.5 to 5, but banker's rounding 4.5 to 4
assert classify_pixel(18, 6) == 20
def main():
parser = argparse.ArgumentParser()
parser.add_argument("img",
help="Path to image to convert to C header file")
parser.add_argument("-o", "--output-file",
help="output file path (for single-image conversion)",
required=True)
parser.add_argument("-f", "--force",
help="allow overwriting the output file",
action="store_true")
parser.add_argument("-i", "--image-name",
help="name of image structure (not implemented)")
parser.add_argument("-c", "--color-format",
help="color format of image",
default="CF_TRUE_COLOR_ALPHA",
choices=[
"CF_ALPHA_1_BIT", "CF_ALPHA_2_BIT", "CF_ALPHA_4_BIT",
"CF_ALPHA_8_BIT", "CF_INDEXED_1_BIT", "CF_INDEXED_2_BIT", "CF_INDEXED_4_BIT",
"CF_INDEXED_8_BIT", "CF_RAW", "CF_RAW_CHROMA", "CF_RAW_ALPHA",
"CF_TRUE_COLOR", "CF_TRUE_COLOR_ALPHA", "CF_TRUE_COLOR_CHROMA", "CF_RGB565A8",
],
required=True)
parser.add_argument("-t", "--output-format",
help="output format of image",
default="bin", # default in original is 'c'
choices=["c", "bin"])
parser.add_argument("--binary-format",
help="binary color format (needed if output-format is binary)",
default="ARGB8565_RBSWAP",
choices=["ARGB8332", "ARGB8565", "ARGB8565_RBSWAP", "ARGB8888"])
parser.add_argument("-s", "--swap-endian",
help="swap endian of image (not implemented)",
action="store_true")
parser.add_argument("-d", "--dither",
help="enable dither (not implemented)",
action="store_true")
args = parser.parse_args()
img_path = pathlib.Path(args.img)
out = pathlib.Path(args.output_file)
if not img_path.is_file():
print(f"Input file is missing: '{args.img}'")
return 1
print(f"Beginning conversion of {args.img}")
if out.exists():
if args.force:
print(f"overwriting {args.output_file}")
else:
pritn(f"Error: refusing to overwrite {args.output_file} without -f specified.")
return 1
out.touch()
# only implemented the bare minimum, everything else is not implemented
if args.color_format not in ["CF_INDEXED_1_BIT", "CF_TRUE_COLOR_ALPHA"]:
raise NotImplementedError(f"argument --color-format '{args.color_format}' not implemented")
if args.output_format != "bin":
raise NotImplementedError(f"argument --output-format '{args.output_format}' not implemented")
if args.binary_format not in ["ARGB8565_RBSWAP", "ARGB8888"]:
raise NotImplementedError(f"argument --binary-format '{args.binary_format}' not implemented")
if args.image_name:
raise NotImplementedError(f"argument --image-name not implemented")
if args.swap_endian:
raise NotImplementedError(f"argument --swap-endian not implemented")
if args.dither:
raise NotImplementedError(f"argument --dither not implemented")
# open image using Pillow
img = Image.open(img_path)
img_height = img.height
img_width = img.width
if args.color_format == "CF_TRUE_COLOR_ALPHA" and img.mode != "RGBA":
# support pictures stored in other formats like with a color palette 'P'
# see: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes
img = img.convert(mode="RGBA")
elif args.color_format == "CF_INDEXED_1_BIT" and img.mode != "L":
# for CF_INDEXED_1_BIT we need just a grayscale value per pixel
img = img.convert(mode="L")
if args.color_format == "CF_TRUE_COLOR_ALPHA" and args.binary_format == "ARGB8888":
buf = bytearray(img_height*img_width*4) # 4 bytes (32 bit) per pixel
for y in range(img_height):
for x in range(img_width):
i = (y*img_width + x)*4 # buffer-index
pixel = img.getpixel((x,y))
r, g, b, a = pixel
buf[i + 0] = r
buf[i + 1] = g
buf[i + 2] = b
buf[i + 3] = a
elif args.color_format == "CF_TRUE_COLOR_ALPHA" and args.binary_format == "ARGB8565_RBSWAP":
buf = bytearray(img_height*img_width*3) # 3 bytes (24 bit) per pixel
for y in range(img_height):
for x in range(img_width):
i = (y*img_width + x)*3 # buffer-index
pixel = img.getpixel((x,y))
r_act = classify_pixel(pixel[0], 5)
g_act = classify_pixel(pixel[1], 6)
b_act = classify_pixel(pixel[2], 5)
a = pixel[3]
r_act = min(r_act, 0xF8)
g_act = min(g_act, 0xFC)
b_act = min(b_act, 0xF8)
c16 = ((r_act) << 8) | ((g_act) << 3) | ((b_act) >> 3) # RGR565
buf[i + 0] = (c16 >> 8) & 0xFF
buf[i + 1] = c16 & 0xFF
buf[i + 2] = a
elif args.color_format == "CF_INDEXED_1_BIT": # ignore binary format, use color format as binary format
w = img_width >> 3
if img_width & 0x07:
w+=1
max_p = w * (img_height-1) + ((img_width-1) >> 3) + 8 # +8 for the palette
buf = bytearray(max_p+1)
for y in range(img_height):
for x in range(img_width):
c = img.getpixel((x,y))
p = w * y + (x >> 3) + 8 # +8 for the palette
buf[p] |= (c & 0x1) << (7 - (x & 0x7))
# write palette information, for indexed-1-bit we need palette with two values
# write 8 palette bytes
buf[0] = 0
buf[1] = 0
buf[2] = 0
buf[3] = 0
# Normally there is much math behind this, but for the current use case this is close enough
# only needs to be more complicated if we have more than 2 colors in the palette
buf[4] = 255
buf[5] = 255
buf[6] = 255
buf[7] = 255
else:
# raise just to be sure
raise NotImplementedError(f"args.color_format '{args.color_format}' with args.binary_format '{args.binary_format}' not implemented")
# write header
match args.color_format:
case "CF_TRUE_COLOR_ALPHA":
lv_cf = 5
case "CF_INDEXED_1_BIT":
lv_cf = 7
case _:
# raise just to be sure
raise NotImplementedError(f"args.color_format '{args.color_format}' not implemented")
header_32bit = lv_cf | (img_width << 10) | (img_height << 21)
buf_out = bytearray(4 + len(buf))
buf_out[0] = header_32bit & 0xFF
buf_out[1] = (header_32bit & 0xFF00) >> 8
buf_out[2] = (header_32bit & 0xFF0000) >> 16
buf_out[3] = (header_32bit & 0xFF000000) >> 24
buf_out[4:] = buf
# write byte buffer to file
with open(out, "wb") as f:
f.write(buf_out)
return 0
if __name__ == '__main__':
if "--test" in sys.argv:
# run small set of tests and exit
print("running tests")
test_classify_pixel()
print("success!")
sys.exit(0)
# run normal program
sys.exit(main())
|